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The Ecological and Social Impacts of Revenue Windfalls in the Peruvian Amazon
l. Introduction

Tropical deforestation is regarded as one of the greatest environmental crises of our
time. Tropical forests provide vital support for fundamental biophysical processes such as
climate regulation and carbon sequestration (Foley et al., 2007). They also harbor
invaluable biodiversity and provide natural resources for millions of people who depend on
them. Despite extensive global conservation efforts, the conversion and degradation of
tropical forests continue largely unabated. As a result, calls have mounted for rigorous
evaluations of the impacts and effectiveness of different conservation approaches. While
many empirical evaluations have highlighted a connection between poverty alleviation and
deforestation, these tend to focus on programs that pay households directly to protect
forests (“Payments for Ecosystem Services”). Far fewer studies have examined the impact
of public revenue shocks on deforestation. By leveraging variation in district-level revenues
induced by a global oil price shock, this study examines the impact of hydrocarbon revenue
windfalls on deforestation and welfare in the Peruvian Amazon.

The focus of my study is Peru’s resource canon, a revenue sharing scheme that
transfers taxes on extractive industries to local governments based on geographic factors
and population needs. While previous research has examined the social and economic
impact of Peru’s mining canon, few have examined the impacts of the hydrocarbon canon,
which is smaller and concentrated in fewer areas. To the best of my knowledge, this is also
the first study to examine the impact of revenue windfalls on deforestation in the Peruvian
Amazon, the fourth largest country in tropical forest extension on Earth (FAO, 2006).

Theoretically, the effect of revenue windfalls on local forest cover can be positive or
negative. More revenue can increase forest cover loss by: (i) facilitating the development of
new infrastructure, particularly new roads which increase access to forested land and
decreases the cost of agricultural transport. (ii) increasing the value of land for settlement
and industry, resulting in forest clearing. On the other hand, revenue windfalls can also
reduce forest cover loss by (i) improving social safety nets and infrastructure that enables
households to substitute away from forest clearing activities like subsistence agriculture
(ii) improving local household and industry access to substitutes for local forest resources
(iii) providing access to external output and labor markets, lowering the relative returns to
clearing forests for agricultural land.

To test these hypotheses, | combine public finance data, census data, and remote
sensing data on deforestation in Peru. | conduct my analysis at the district-level and
restrict my study area to all districts in the jungle regions of the Peruvian Amazon. My main
estimation strategy combines difference-in-difference estimations with a propensity score
matching approach.

My first set of results relate to deforestation outcomes. Using annual district-level
deforestation data, | find a non-monotonic relationship between canon revenue and forest



loss. For districts below the 50" percentile of the canon distribution, additional revenue
has a marginally positive effect on deforestation. Above the 50" percentile, additional
revenue has a marginally negative effect on deforestation. At the 50" percentile, a 10-
percentile change is expected to decrease deforestation by 35.6 hectares (7.6% decrease
at the mean) while a 25-percentile change is expected to decrease deforestation by 215.3
hectares (46% decrease at the mean). These results are robust to propensity score
matching, controlling for oil palm expansion as a confounder, and the use of an alternate
deforestation dataset.

My second set of results relate to poverty. Using district-level poverty data at three
points in time, | find that being in the top quartile of canon revenue distribution significantly
reduces poverty rates by 10 percentage points on average. In contrast, | find that canon
revenue has no effect on household water access, sanitation access, or electricity access.

Taken together, these findings suggest that revenue windfalls had positive
environmental and social effects on districts receiving high levels of canon transfers.
However, districts receiving moderate to low levels of canon did not experience the same
returns. This non-monotonic relationship is consistent with prior literature highlighting the
existence of non-linear patterns in the relationship between natural resource revenue
windfalls and economic and political outcomes (Caselli & Cunningham, 2009; Maldonado,
2022; Aguero et al., 2021).

By leveraging exogenous variation in commodity prices, this study provides evidence
that large revenue windfalls have the potential to yield significant benefits for local
communities. However, these results do not account for the large negative externalities
associated with oil and gas extraction. Rather, they highlight the potential to support
conservation efforts by improving public infrastructure and supporting the basic needs of
rural communities in tropical forests.

Il. Background and Literature Review

As the second largest piece of the Amazon Basin after Brazil, the Peruvian Amazon is
one of the most biodiverse regions on Earth. It is also home to a large indigenous
population, including several groups who live in voluntary isolation (Finer & Orta-Martinez,
2010). At the same time, the region continues to be an active and controversial zone of
hydrocarbon exploration and production. In Peru, hydrocarbon blocks are delimited by the
national government and leased to private companies for exploration and production (Finer
& Orta-Martinez, 2010). The first extensive wave of oil exploration in the Western Amazon
began in the 1970s. In the mid 2000s, rising global oil prices spurred a second wave of oil
and gas exploration. As shown in Figure 1, this period was marked by an unprecedented
extension of hydrocarbon concessions. By 2009, hydrocarbon blocks covered vast swaths
of the region, though only some areas were successful in production.



Figure 1. Maps of Hydrocarbon Concessions in 2004 and 2009
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In Peru, taxes on extractive activity are redistributed to local governments through
Peru’s resource canon. The national government transfers most of the revenue from
extractive operations to producing areas, with most revenue accruing to the districts and
provinces where the site of production is located. Population levels and basic needs are
considered but only within the mineral producing regions. Specifically, the formula
allocates 10 percent of the revenue to the producing district(s) and 25 percent to districts
in the producing province based on population characteristics (rural share), basic needs,
and infrastructure deficits (Aresti, 2016). The remainder is allocated to regional
governments.

While Peru’s Ministry of Economy and Finance does not disclose the information used
to calculate shares for different jurisdictions, the agency does publish data on the annual
amount of canon transferred to each district. This data reveals that transfers from the
canon surged from early 2000 to 2018 (Figure 2), fueled in large part by an increase in
global commodity prices and extractive operations (Aresti, 2016). As shown in Figure 3, the
share of total district-level revenue derived from the oil and gas canon ranges significantly
across my sample. Among these districts, revenue from the oil and gas canon comprised a
substantial share of revenue if districts were exposed to high levels of canon.



Figure 2. Average District Level Revenue From 1998-2018, By Source.
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Figure 3. Average District Level Revenue by Canon Decile (2008 -2017)
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Across Peru, the canon has contributed to substantial inequality in local budgets. In the
case of the late 2000s oil boom, the distribution of canon revenue was highly concentrated
in a few regions (See Figure 4). While many districts in producing regions (primarily Ucayali,
Cusco, and Loreto) received some level of canon, there were still some that received none
at all.

Figure 4. Distribution of Canon Revenue During Pre-Treatment and Post-Treatment Period
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A large body of empirical literature has examined the social and economic impact of
revenue windfalls from natural resource extraction. However, many of these studies focus
exclusively on cross-sectional data at the national level and are prone to endogeneity
concerns. For instance, estimates obtained using this approach may be biased by
unobservable characteristics that a priori determine the distribution of extractive activities
or revenues in affected areas. Some studies have circumvented these issues by exploiting
geographic variation in the abundance of natural resources. For example, Caselli &
Michaels (2013) use variation in the location and timing of offshore oil well discoveries to
show that oil windfall revenues increase public expenditures but have little impact on
public goods provision in Brazilian municipalities.

Several studies have also leveraged temporal variation in global mineral prices to
measure the impacts of natural resource production on local communities. For instance,
Dube and Vargas (2013) use global commodity prices and local production levels to
evaluate the relationship between commodity price shocks and conflict in Columbia. As
they point out, exploiting international price changes that are driven by supply shocks
originating in other nations helps ensure that this variation is exogenous to their outcome of
interest. Using this methodology, they show that rises in oil prices increased both
municipal revenue and violence differentially in the oil region. Building on this research, |
exploit cross-sectional variation in exposure to Peru’s resource canon along with temporal



variation induced by a global oil price shock to estimate the impacts of revenue windfalls
on local deforestation and welfare outcomes.

While several studies have examined the social and economic impacts of the Peruvian
canon, most have focused on the mining canon or the canon more generally. Overall, these
studies show mixed results. Some studies find no significant effect of the canon on
income, poverty, or inequality, while others highlight a positive or even non-monotonic
relationship (Aragén 2013, Loayza and Rigolini 2016, Zambrano et al. 2014, Maldonado and
Ardanaz 2023). Moreover, the methods used in these studies vary. Aragén and Winkler
(2023) implement several different strategies to mitigate omitted variable bias. Their first
method is equivalent to a difference-in-difference model with municipality fixed effects
and heterogeneous time trends. Their second strategy utilizes a propensity score matching
approach, similar to the methodology used by Ticci and Escobal (2014) and Loayza and
Rigolini (2016).

| draw on these methods to examine the impacts of the hydrocarbon canon on
deforestation in the Amazon. Unlike Peru’s Andes region, where most of the nation’s mining
activity takes place, the jungle regions of the Peruvian Amazon are geographically suited for
oil and gas development. As the fourth largest country in tropical forest extension on Earth
(FAO, 2006), the Peruvian Amazon serves as a particularly important site of study. Despite
Peru’s efforts to adopt international best practices for tropical forest conservation,
deforestation has continued to grow, driven primarily by expanding cash crop cultivation
(MINAM, 2021). Between 2000 and 2017, the bulk of new forest loss was primarily
concentrated in the regions of Ucayali, Huanuco, San Martin, Loreto, and Madre de Dios
(Figure 4). In this context, state and international conservation agencies have targeted
Indigenous communities with a range of initiatives that aim to help them conserve forests
while also pursuing “sustainable” forms of economic development. However, these
projects have yielded mixed results in terms of conservation outcomes and have not
fundamentally helped rural Indigenous communities meet their basic needs (Angelsen et
al., 2018; Brandon, 2001). While many conservation programs offer limited funding to
communities for demonstrated reductions in deforestation, they do not allow for significant
investments in human capital or infrastructure. At the same time, a primary source of
funding that does support rural services are levies from oil, gas, and, in the Andes, mineral
extraction. This motivates the question: how have positive revenue shocks from natural
resource extraction affected local deforestation outcomes and access to basic services in
the Peruvian Amazon?



Figure 5. District-Level Deforestation in Peru (2001 -2017)
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lll. Empirical Strategy
IlIA. Data

My study area encompasses all districts in the High Jungle and Low Jungle regions of the
Amazon. These regions comprise the largest share of the Amazon and are ecologically
distinct from the Andes region, which rests on the Eastern Amazon border. In the
deforestation analysis, | restrict my sample to districts where protected area covers less
than half of total area, and where forest cover in the year 2000 comprises less than ten
percent of total area.

Deforestation

To measure deforestation between 2001 and 2017, | used the_ Global Forest Change
dataset provided by Hansen et al. (2013). This dataset provides a binary measure of annual
forest loss per 30m” pixel based on Landsat satellite imagery. Forest loss is calculated
relative to baseline forest cover in the year 2000, where the presence of forest area is
counted when tree canopy exceeds five meters. My outcome variable is expressed as the
amount of forest loss detected in each year within each district.

I verify my estimates using the Geo Bosque dataset published by Peru’s Ministry of
Agriculture. While both are based on Landsat satellite imagery, the two differ slightly in
methodology.

Socioeconomic Outcomes

The second portion of my analysis examines poverty and public goods provision. This panel
dataset draws from three different national censuses (1993, 2007, and 2017). My primary
outcomes are measures of poverty and local living standards that could be affected by
local governments’ policies. These indicators include access to public services (piped
water, indoor sewage, and electricity) and the household rate poverty.

Canon Revenue

Data on annual district-level revenues was obtained from Peru’s Ministry of Economy and
Finance. All monetary values were deflated to 2010 levels and merged with 2017 National
Census data to compute per capita measures revenue.

Exposure to the canon is measured as the total value of canon revenue transferred to a
district between 2008-2017. To mitigate the effect of extreme outliers in the data, canon
revenue is expressed in terms of percentile ranks. Districts receiving no canon are ranked
at the 0™ percentile.


https://storage.googleapis.com/earthenginepartners-hansen/GFC-2022-v1.10/download.html

Control Variables

Additional control variables were selected based on a literature review of deforestation
drivers in Peru and the other Amazonian countries. These variables are summarized in
Table 1 and briefly described below.

| proxy for market access and mobility by calculating the average Euclidean distance from
the centroid of each district to its nearest departmental capital. Deforestation can also
vary widely across different forest governance (Schleicher et al., 2017). To account for
these effects, | calculated the proportion of each district that falls within protected forest
areas, indigenous territories, and logging concessions.

Biophysical factors, such as terrain and climate, can affect deforestation through variation
in local agricultural suitability and forest growth (Bax & Francesconi, 2018). | therefore
control for the average altitude, slope, annual precipitation levels, and baseline
temperature of each district. Moreover, | used boundaries on national ecoregions to
determine the ecological biome that encompasses the largest area in each district.

All variables were converted into spatially explicit layers and summarized at the district
level. As detailed in Table 7, logarithmic and square root transformations were applied to
several variables to ensure normality of the residuals. A constant value of 1 to log-
transformed variables to avoid zero-values.



Table 1. Description of variables

Variable Units Description Transformation Source Spatial
Resolution
Deforested Area hectares/ | Annual forest loss Global Forest 30m
(GFW) year detected between 2000 Watch
to 2017
Baseline Forest % Percentage of district Global Forest 30m
Coverin 2000 covered in forested area Watch
in 2000
Deforested Area hectares/ | Annualforest loss Geo Bosque 30m
(GB) year detected between 2000
to 2017
Elevation meters Mean elevation Instituto 1:500 000
Geogréfico
Nacional (IGN)
Slope degrees Mean slope Instituto 1:500 000
Geogréfico
Nacional (IGN)
Rainfall mm Annual precipitation CHIRPS 0.05°
levels
Temperature °C Average annual mean Huerta et al. 2023 0.07°
temperature recorded
between 1981-2020
Distance to m Distance from district log
Nearest Capital centroid to the nearest
department capital
Protected Areas % Percentage of district % SERNANP
located in a national,
regional, or private
protected area
Ecoregions FE Categorical variable MINAM
representing the
ecoregion covering the
most area in the district
Departments FE Categorical variable Instituto

representing the district
department (two

Geografico
Nacional (IGN)



https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
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https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs/
https://www.nature.com/articles/s41597-023-02777-w/tables/1
https://geo.sernanp.gob.pe/visorsernanp/
https://geoservidor.minam.gob.pe/recursos/intercambio-de-datos/
https://data.humdata.org/dataset/cod-ab-per?
https://data.humdata.org/dataset/cod-ab-per?
https://data.humdata.org/dataset/cod-ab-per?

administrative levels
above districts)

Population person/ | Population from 2017 log INEI
Density m? census divided by district
area
Canon Revenue soles per | Annual per capita MEF
capita revenue from 2004-2017
Poverty Rate % Poverty rate reported in INEI
1999, 2007, and 2017
national census
Water Access % Percentage of INEI
Rate households lacking
access to a public water
network (1993, 2007,
2017)
Sanitation % Percentage of INEI
Access Rate households lacking
access to indoor
sanitation (1993, 2007,
2017)
Electricity % Percentage of INEI
Access households without

electric lighting (19983,
2007, 2017)

IlIB. Balance Test

A major threat to validity is that resource-based transfers are not randomly distributed and
may be influenced by unobservable characteristics. To address this concern, | conduct a

balance test where | distinguish between municipalities with high levels of canon (top 25%
of the per capita canon) and low levels of canon (bottom 75%). | use this distinction as the

baseline indicator of treatment status.

Table 2 compares key characteristics between these two groups. Overall, districts with high
levels of canon tend to be larger, more rural, less accessible by road, and have
proportionally more forest cover in the year 2000. In 2007, before the start of the oil boom,
these districts also had slightly worse access to public services and marginally higher
poverty rates. These differences are likely driven by the canon allocation formula, which

prioritizes rural districts with higher demonstrated need.



https://censos2017.inei.gob.pe/redatam/
https://apps5.mineco.gob.pe/transferencias/cuadros/Hoja1_1.aspx
https://censos2017.inei.gob.pe/redatam/
https://censos2017.inei.gob.pe/redatam/
https://censos2017.inei.gob.pe/redatam/
https://censos2017.inei.gob.pe/redatam/

Table 2. Balance Test Comparing Districts in the Top Half of the Canon Revenue Distribution
to Districts in the Bottom Half

Standardized Mean Standardized Difference

Treated Control Treated - Control
Resource Canon p.c. (S/) 1.121 -0.198 1.319
Total Revenue p.c. (S/) 0.765 -0.135 0.900
Area (km?) 0.577 -0.102 0.679
Population Density -0.231 0.041 -0.272
Forest Cover % in 2000 0.290 -0.051 0.341
Distance to Nearest Road (km) 0.291 -0.051 0.342
Rural Share 2007 (%) 0.361 -0.064 0.425
Poverty 2007 (%) 0.279 -0.049 0.328
No Water Access 2007 (%) 0.368 -0.065 0.433
No Sanitation Access 2007 (%) 0.595 -0.105 0.700
No Electricity 2007 (%) 0.250 -0.044 0.294
Protected Area (%) 0.172 -0.030 0.202
Indigenous Territory (%) 0.608 -0.107 0.715
Logging Concession (%) 0.355 -0.063 0.418
Average Temperature (C) 0.274 -0.048 0.322
Annual Rainfall (mm) 0.352 -0.062 0.414

Elevation (m) -0.185 0.033 -0.218



IlIC. Empirical Strategy

My estimation strategy exploits two sources of variation. The first is time variation arising
from a shock in global oil prices. The second source of variation is cross-sectional and
arises from differences in the share of revenue allocated to a district, as determined by the
canon distribution formula. Leveraging the interaction of these two sources of variation, |
use a differences-indifferences (DD) approach to compares deforestation levels between
districts that are my favored by the canon to districts that are less favored by the canon,
before and after the start of the oil boom in 2008.

Deforestation

First, | use panel data on annual forest loss between 2001-2017 to estimate the impacts on
deforestation at the district-level. My baseline specification is as follows:

Deforestation;, = B1(f(CP;) * D) + B2(Rit) + B3(X; * Y) + FE; + FEy + €3¢

where (i, t, d) denote respectively district, year, and department. The outcome

variable, Deforestation;;, corresponds to the amount of forest loss (hectares) detected in
districti in year t. The variable D; is a binary indicator that equals one in every year starting
from 2008, the start of the commodity boom. f(CP;) is a function of cumulative canon
revenue per capita allocated to district i between 2008 and 2017. Due to the substantial
variation in canon transfers, CP; is expressed as a percentile rank. My preferred
specification of f(CP;) is a quadratic function, though | report additional specifications in
my results section. R;; represents the annual rainfall for each districti inyeart. X; isa
vector of district-specific time-invariant control variables, including the proportion of
baseline forest cover in 2000, distance to the nearest departmental capital, the rural
population share in 2007, the poverty rate in 2007, population density, percent of area
classified as a protected area, and average slope. Interacting X; with year dummy variables
(Y;) allows these effects to vary flexibly over time. District fixed effects (FE;) are added to
control for time invariant factors that vary between districts. Department-year fixed effects
(FEg) are included to control for any macro level shocks that vary across departments, an
administrative unit equivalent to states. ¢;; is the error term. A complete list of variables is
described below in Table 1.

Poverty & Public Goods Provision

The second portion of my analysis estimates the effect of canon revenue on poverty and
public goods provision using national census data from the years 1993, 2007, and 2017. My
difference-in-differences strategy compares the change in outcomes during the post-oil
boom period (2017) relative to the pre-oil boom period (1993 and 2007) between districts
that were highly affected by the canon to those that were less affected by the canon. My
baseline specification is as follows:



Yie = P1(f(CP;) * D¢) + B (X; *Yy) + FE; + FE,; + &;¢

where (i, t, e) denote respectively district, year, and ecoregion. The outcome variable, y;,
corresponds to one of the following four outcome variables: poverty rate (percentage of
households in poverty), water access rate (percentage of households without a public
water network), sanitation access rate (percentage of households without indoor sanitation
services), and electricity access rate (percentage of households without electric lighting).
The variable D; is a binary indicator that equals one in the year 2017, the only year with
census data collected after the commodity boom. f(CP;) is a function of cumulative canon
revenue per capita allocated to district i between 2008 and 2017, expressed as a percentile
rank. X; is a vector of district-specific time-invariant control variables, including distance to
the nearest departmental capital, the rural population share in 2007, the urban population
countin 2007, and the amount of forested area in 2000. Interacting X; with year dummy
variables (Y;) allows these effects to vary flexibly over time. | include district fixed effects
(FE;) to control for time invariant factors that differ between districts, and | include
ecoregion-year fixed effects (FE,;) to control for macro level shocks that affect the High
Jungle and Low Jungle ecoregions differentially over time. g;; is the error term.

Propensity Score Matching

My second empirical approach uses propensity score matching (PSM) to mitigate the
challenges associated with the non-random assignment of canon revenue. The PSM
approach constructs an artificial control group that matches each treated unit with a non-
treated unit of similar characteristics. In this context, treatment assignment corresponds
to being in the top half of the canon revenue distribution.

For the deforestation analysis, matching is done on a set of geographic characteristics,
including baseline forest cover, elevation, rainfall, temperature, population density, rural
population share, percent of households with piped water in 2007, and distance to the
nearest road. This ensures that treated and non-treated districts are comparable based on
factors that could influence deforestation rates. For each socioeconomic outcome,
matching is based on the outcome measured in 2007, as well as population density, rural
share, elevation, and distance to the nearest road.

Figure 8 maps illustrates the weighted sample used for the deforestation analysis after
propensity score matching and Figure 9 plots the standardized mean difference of the
selected matching covariates. Figure 9 shows that before matching (grey circles), most
covariates exhibit significant differences between the treated and control groups. After
matching (black circles), the standardized mean differences shrink and cluster around
zero, indicating improved balance. By balancing these covariates across treatment and
control groups, PSM mitigates the impact of confounding variables, strengthening the
robustness of the subsequent analysis.



Figure 8. Matched Sample for Deforestation Analysis
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IV. Results
IV.A Main Results for Deforestation Outcomes

Table 4 presents baseline estimates with various specifications of f(CP;). Column (1)
includes a binary treatment indicator that corresponds to being in the top half of the canon
distribution, column (2) includes a binary indicator that corresponds to being in the top
quarter of the canon distribution, and column (3) includes canon percentile as a
continuous measure. The coefficient estimates in all three columns are positive but
insignificant.

In column (4), a significant non-linear relationship emerges when canon percentile is
expressed as a quadratic polynomial term. The estimated coefficient of the interaction
term (canon percentile; + canon percentile?) * D reveals the average increase in
deforestation arising from a one percentile increase in canon revenue after 2008. The
negative coefficient on the quadratic term, canon percentilei2 * D, indicates that the shape
of this regression line resembles a downward facing parabola. According to these
estimates, deforestation is expected to increase at an increasing rate for every additional
percentile increase from the 0-50™ percentile.

For districts below the 50" percentile, every additional percentile increases
deforestation at an increasing rate. For every additional percentile after the 50" percentile,
canon revenue has an increasingly negative effect on deforestation. At the 50" percentile, a
10-percentile change is expected to decrease deforestation by 35.6 hectares (7.6%
decrease at the mean), a 25-percentile change is expected to decrease deforestation by
215.3 hectares (46% decrease at the mean), and a 40-percentile change is expected to
decrease deforestation by 546.7 hectares.

Figure 10 plots the effect of canon percentilei2 on deforestation in each year relative to
2007 levels. Overall, we observe agreement between the two deforestation outcomes
derived using the Global Forest Watch and Geo Bosque datasets. The magnitude of the
coefficient on canon ]z)ercentilei2 increases immediately following 2007. Importantly, this
plot shows that prior to 2008, district-level deforestation does not appear to depend on
levels of canon revenue received. However, a notable exception arises in the year 2005,
when deforestation across the entire region spiked. Past research suggests that new
logging concessions played a key role in this marked increase (Oliveira et al., 2007).



Table 4. Baseline estimates of canon revenue on deforestation

Dependent Variable

Deforestation
Model: (1) (2) (3) (4)
Variables
Canon 25th Percentile x D 43.8
(320.5)
Canon 50th Percentile x D 241.0
(231.4)
Canon Percentile x D 6.01 34.2%**
(3.83) (10.6)
Canon Percentile? x D -0.337***
(0.118)
Controls X Year Yes Yes Yes Yes
Fized-effects
District Yes Yes Yes Yes
Year-Department Yes Yes Yes Yes
Fit statistics
Observations 5,372 5,372 5,372 5,372
R? 0.830 0.831 0.832 0.836
Within R? 0.131  0.136  0.141 0.164

Clustered (Province) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Figure 10. Effect of canon percentile? on deforestation relative to 2007 levels
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Note: black points correspond to deforestation measured using the Global Forest Change
dataset, red corresponds to deforestation measured with the Geo Bosque dataset.



Figure 11. Effect of canon percentile; on deforestation relative to 2007 levels
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Note: black points correspond to deforestation measured using the Global Forest Change
dataset, red corresponds to deforestation measured with the Geo Bosque dataset.



IV.B Robustness Checks for Deforestation

The results thus far show that starting after the oil boom in 2008, canon revenue has a
significant non-linear effect on deforestation. To check the robustness of the results, |
extend the analysis along three dimensions. In Table 5, | present my baseline specification
(column 1) alongside three alternative specifications. In column (2), | show that these
results are robust to using the alternate Geo Bosque deforestation dataset. Note, this
dataset provides more conservative estimates of deforestation relative to the Global Forest
Watch dataset. Consequently, the magnitude of the coefficient estimates are smaller.

Table 5. Baseline estimates of canon revenue on deforestation

Dependent Variable

Deforestation

Model: (1) (2) (3) (4) (5) (6)
Variables
Canon Percentile? x D -0.337***  -0.198** -0.323*** -0.317*** -0.321*** -0.294**

(0.118) (0.089) (0.111) (0.108) (0.109) (0.116)
Canon Percentile x D 34.2%** 21.8*** 33.9%** 33.7** 33.8*** 30.2**

(10.6) (7.36) (9.84) (9.58) (9.74) (11.8)
OP Cover x OP Price w/No Lag 0.223**

(0.107)
OP Cover x OP Price w/1 YR Lag 0.259***
(0.076)
OP Cover x OP Price w/2 YR Lag 0.223***
(0.051)

Controls X Year Yes Yes Yes Yes Yes Yes
Alt. Dataset No Yes No No No No
Matched Sample No No No No No Yes
Fized-effects
District Yes Yes Yes Yes Yes Yes
Year-Department Yes Yes Yes Yes Yes Yes
Fit statistics
Observations 5,372 5,372 5,372 5,372 5,372 1,292
R? 0.836 0.839 0.839 0.841 0.840 0.911
Within R2 0.164 0.096 0.179 0.187 0.182 0.259

Clustered (Province) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Propensity Score Matching

In my second test, | use propensity score matching to create an artificial sample that is
balanced on observable characteristics. This approach requires a binary treatment



variable to denote the treatment group. Accordingly, | define treatment as districts in the
top two quartiles of the canon distribution.

Column (4) shows that my results are robust to implementing propensity score matching.
In fact, the magnitude of the coefficients increase significance after implementing
propensity score matching.

Controlling for Oil Palm Expansion as a Driver of Deforestation

As one of the largest drivers of deforestation in Peru (Bennett et al., 2018), the expansion of
oil palm plantations presents a significant threat to validity. Figures 12 and 13 reveal that
rising oil palm prices appear to align with trends in deforestation, raising even greater
cause for concern. To ensure that the effect of the oil boom is not confounded by
coinciding shocks to the oil palm industry, | compute the level of oil palm cover detected in
each district in 2015 based using data from Vijay et al. (2018). In column (3) of Table 5, |
interact this variable with annual global palm oil prices. Columns (4) and (5) present the
same specification but include a one-year and two-year time lag in global oil palm prices.
In all oil palm specifications (columns 3-6), the coefficient on the interaction between oil
palm cover*price is positive and significant. However, the coefficients on canon revenue
remain highly significant, suggesting that the coinciding expansion of oil palm plantations
is not the main driver of this effect.



Figure 12. Aggregate Deforestation Over Time

Deforestation in Peru
Source: Global Forest Watch

250 K-

200 K-

150 K-

Forest Loss (ha)

100 K-

2005 2010 2015

Year

Figure 13. Global Palm Qil Prices Over Time
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Spatial Autocorrelation

Deforestation often exhibits strong spatial dependence due to the nature of the
phenomena involved. Geographical proximity plays a significant role in influencing
deforestation patterns because changes in one area can have spillover effects on
neighboring regions through ecological, economic, and policy channels. If spatial
correlations are present in the data, traditional standard errors falsely assume
observations are independent, leading to biased and inconsistent estimates. Conley
standard errors can correct for these issues by adjusting for spatial autocorrelation within a
specified distance. This makes Conley standard error more flexible than other methods
that assume specific forms of spatial dependence.

To account for potential spatial autocorrelation, | test my baseline specification using
Conley standard errors of varying bandwidths. As shown in Table 6, my results are robust to

using bandwidth lengths up to 500km.

Table 6. Baseline deforestation estimates with Conley standard errors

Dependent Variable
Deforestation
Model: (10km) (20km) (50km)  (100km) (200km) (300km) (500km)

Variables

Canon Percentile? x D -0.337*** -0.337*** -0.337*** -0.337*** -0.337*** -0.337*** -0.337***
(0.092) (0.096) (0.086) (0.081) (0.098) (0.089) (0.072)

Canon Percentile x D 34.2%** 34.2%** 34.2%** 34.2%** 34.2%** 34.2%** 34.2%*%*
(7.76) (8.90) (8.98) (9.85) (10.4) (8.56) (5.50)

Controls X Year Yes Yes Yes Yes Yes Yes Yes
Excludes Cusco Yes Yes Yes Yes Yes Yes Yes
Fized-effects

District Yes Yes Yes Yes Yes Yes Yes
Year-Department Yes Yes Yes Yes Yes Yes Yes
Fit statistics

Observations 5,372 5,372 5,372 5,372 5,372 5,372 5,372
R? 0.836 0.836 0.836 0.836 0.836 0.836 0.836
Within R? 0.164 0.164 0.164 0.164 0.164 0.164 0.164

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1



IV.C Discussion of Deforestation Results

Overall, | find a non-linear relationship between canon revenue and deforestation. These
results are robust to accounting for the confounding effects of oil palm expansion,
implementing propensity score matching, and using Conley standard errors to account for
spatial autocorrelation.

According to my baseline specification (reported in column 1 of Table 5), additional
exposure to the canon has an increasingly positive effect on deforestation for districts
below the 50" percentile. Between 2008 and 2017, districts at the 50" percentile received
approximately 16 percent of total revenue from the oil and gas canon, compared to 56
percent for districts at the 90" percentile. Thus, districts in the bottom half of the
distribution benefit only moderately from the canon. The positive deforestation effect
observed for these districts is likely related to the canon distribution formula, which
considers various indicators of need in addition to geographic proximity. Districts below the
50" percentile are most likely not producing districts'. Rather, these districts likely receive
canon revenue because they are a) located in the same province as a producing district
and b) demonstrate some level of need. Past research indicates that non-producing
recipients of the canon tend to be poorer and more rural relative to the average potential
beneficiary (Loayza & Rigolini, 2016). Hence, canon may increase deforestation in these
districts because they are poorer to begin with and do not enjoy the full benefits of new
development, such as the creation of new jobs and robust public spending.

This finding is also in line with prior literature suggesting a non-monotonic relationship
between revenue windfalls and public expenditure. Maldonado and Ardanaz (2023) show
that the change in public expenditures induced by Peru’s mining canon varies according to
the level of transfers received. They find that “Transport” expenditures category
experienced the most dramatic increase as a result of the revenue windfalls. However,
resource-rich districts spent significantly less on transportation than the average district,
where “Transport” expenditures increased by 250 soles for every 1000 soles of canon
transfers (Maldonado & Ardanaz, 2023). Given that road construction is widely considered
to be one of the largest drivers of deforestation in the Peruvian Amazon (Bax et al., 2016),
this finding is consistent with a positive deforestation effect of additional canon for
districts receiving low/moderate levels of canon.

In contrast, districts receiving high levels of canon are most likely to be producing districts.
This means that benefits accrue to these districts because they are geographically suitable
for production. These districts experience the opposite effect. That is, more revenue is
expected to have an increasingly large negative effect on deforestation. There are many
reasons why this may be the case. First, a substantial influx of new revenue may allow
districts to substitute away land-intensive agricultural activity. In producing districts, the

" Producing districts house the site of oil and gas production. These districts are awarded the most revenue by
the canon distribution formula.



expansion of oil and gas operations can increase employment and demands for local
goods and services, which can help diversify income sources away from the agricultural
sector. Revenue windfalls can also be used to finance health and educational services,
infrastructure, and other public goods that increase physical and human capital
accumulation. Oil and gas development can also affect the agricultural sector through
crowding out. For instance, hydrocarbon extraction often relies on intensive water use,
requires extensive land area, and can result in major environmental externalities (Finer &
Orta-Martinez, 2010).



IV.D Results for Socioeconomic Outcomes

In Tables 7-10, | report estimates with canon revenue expressed in various forms. Table 7
and Table 8 reports canon as a continuous measure of treatment, expressed as quartiles
and deciles of canon, respectively. Table 9 and Table 10 reports canon as a binary measure
of treatment, expressed as being in the top quartile or top two quartiles, respectively.

In all specifications, the significant negative coefficient in column (1) reveals that canon
reduces poverty. The magnitudes of the coefficients are relatively similar across these
different specifications. However, column (2) shows that this effect is only robust to
propensity score matching (remains significant at the 5 percent level) when treatment is
defined as being in the top quartile. Specifically, this specification indicates that beingin
the top quartile decreases poverty rates by 10 percentage points on average. At the mean
poverty rate of 44 percent, this effect translates into a substantial 22.8 percent reduction.

Next, | report estimates on measures of public goods provision. Across all four
specifications, insignificant coefficients in columns (3) — (8) reveal that canon revenue has
no effect on household water access, sanitation access, or electricity access.

For all outcomes, we do not observe any clear trends of the estimated interaction effects
prior to the oil boom (Figures 14a-d). For the poverty outcome, the magnitude of the
coefficient on Top Quartile sharply increases in 2017, the only year measuring post-boom
outcomes.

This negative impact of canon on poverty rates is consistent with research by Loayza and
Rigolini (2016), who study the impacts of Peru’s mining canon. Specifically, they find
significant reductions in poverty in districts where mining production takes place. In other
words, the benefits of mining activity are localized to producing districts, who receive the
bulk of profits from mining activity.

This lack of impact on public goods and services is consistent with prior evidence by
(Aragén & Winkler, 2023), Caselli & Michaels (2009), and Ticci and Escobal (2015). In their
evaluation Brazil municipalities, Casseli and Michaels (2010) find that revenue windfalls
from offshore oil wells translate into increases in public expenditure but have insignificant
impacts on public goods and services. In studying the long-term impacts of the overall
resource canon in Peru, (Aragén & Winkler, 2023) find no significant effects on access to
public services or poverty levels. Similarly, Ticci and Escobal (2015) find that new mining
operations in Peru did not improve access to public services between 1993 and 2007.

The lack of impact on public goods and services can be attributed to several possible
explanations. First, it’s possible that improvements to water, sanitation, and electricity
infrastructure are hindered by the geography of the Amazon. As discussed earlier, districts
affected by the canon tend to be more remote, less dense, and further from roads. Thus,
the cost of upgrading water, sanitation, and electricity infrastructure may be significantly



higher in these districts. It’s also possible that local governments prefer to allocate revenue

windfalls on projects that are not reflected in these outcomes. For instance, Aragén &

Winkler (2023) find positive effects of the overall resource canon on transport
infrastructure projects and municipal resources, such as personnel and vehicles.
Furthermore, it’s possible local governments lack the technical capacity to use the canon

effectively. For instance, Loayza et al. (2014) and Hoyos (2019) find suggestive evidence

that lack of technical capacities was an important constraint for local governments to use
their budget on investment projects effectively.

Figures 14 a-d.
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Table 7. Effect of canon quartile on poverty and public goods

Dependent Variable
Poverty Rate No Water Acc. % No Sanitation Acc. %  No Electricity %

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables

Canon Quartile x D -3.418***  -3.653 -1.023 -0.466 -0.598 -0.029 1.621 3.930*
(0.986) (2.259) (1.571) (2.072) (1.149) (2.202) (1.512)  (2.254)

Controls X Year Yes Yes Yes Yes Yes Yes Yes Yes

Matched Sample No Yes No Yes No Yes No Yes

Fized-effects

District Yes Yes Yes Yes Yes Yes Yes Yes

Year-Ecoregion Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 885 255 877 276 877 246 877 252

R? 0.87002 0.89295 0.80998 0.81841 0.88415 0.87338 0.87090 0.85660

Within R? 0.17507 0.38257 0.14237 0.25778 0.23880 0.19517 0.14289 0.24471

Clustered (District) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 8. Effect of canon decile on poverty and public goods

Dependent Variable
Poverty Rate No Water Acc. % No Sanitation Acc. %  No Electricity %

Model: (1) (2) 3) (4) (5) (6) (7) (8)

Variables

Canon Decile x D -1.518*** -1.818* -0.398 -0.158 -0.171 -0.102 0.604 1.455
(0.423) (0.971) (0.649) (0.879)  (0.486) (0.913) (0.657) (1.017)

Controls X Year Yes Yes Yes Yes Yes Yes Yes Yes

Matched Sample No Yes No Yes No Yes No Yes

Fized-effects

District Yes Yes Yes Yes Yes Yes Yes Yes

Year-Ecoregion Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 885 255 877 276 877 246 877 252

R? 0.87019  0.89405 0.80995 0.81837 0.88411 0.87339 0.87080 0.85515

Within R2 0.17617 0.38889 0.14226 0.25764 0.23857 0.19527 0.14224 0.23707

Clustered (District) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1



Table 9. Effect of being in the top quartile on poverty and public goods

Dependent Variable

Poverty Rate No Water Acc. %

No Sanitation Acc. %

No Electricity %

Model: (1) (2) 3) (4) (5) (6) (7) (8)

Variables

D x Canon 25th Percentile -10.982*** -9.921**  -4.303 -4.423 -8.180 -6.298 7.405 11.637
(3.174) (4.295) (7.453) (8.061) (5.423) (7.358) (7.097) (7.624)

Controls X Year Yes Yes Yes Yes Yes Yes Yes Yes

Matched Sample No Yes No Yes No Yes No Yes

Fized-effects

District Yes Yes Yes Yes Yes Yes Yes Yes

Year-Ecoregion Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 885 255 877 276 877 246 877 252

R? 0.86911 0.89180 0.80998 0.81894 0.88474 0.87441 0.87096 0.85550

Within R? 0.16932 0.37590 0.14236 0.25997 0.24267 0.20176 0.14328 0.23889

Clustered (District) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 10. Effect of being in the top two quartiles on poverty and public goods

Dependent Variable

Poverty Rate No Water Acc. %

No Sanitation Acc. %

No Electricity %

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables

D x Canon 50th Percentile -6.138**  -3.620 -4.614 -6.234 -0.469 -0.250 6.130 7.790
(2.534) (4.146) (3.978) (4.577) (3.364) (5.290) (4.415) (5.471)

Controls X Year Yes Yes Yes Yes Yes Yes Yes Yes

Matched Sample No Yes No Yes No Yes No Yes

Fized-effects

District Yes Yes Yes Yes Yes Yes Yes Yes

Year-Ecoregion Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 885 255 877 276 877 246 877 252

R? 0.86864 0.88934 0.81016 0.82039 0.88409 0.87338 0.87115 0.85444

Within R? 0.16628 0.36175 0.14318 0.26590 0.23842 0.19519 0.14455 0.23330

Clustered (District) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1



V. Conclusion

This study exploits variation in hydrocarbon production and global oil prices to examine the
impact of revenue windfalls on deforestation and welfare in the Peruvian Amazon. My
results reveal a non-monotonic relationship between deforestation and revenues
transferred through the “canon,” Peru’s national revenue-sharing scheme. Specifically, |
find that additional canon increases deforestation for districts in the bottom half of the
canon distribution but decreases deforestation for districts in the top half. Furthermore, |
find that high levels of canon revenue (being in the top quartile) significantly reduces
poverty (10 pp on average) but has no effect on access to basic goods and services.

These findings have significant policy implications. First, they show that moderately
affected communities are less likely to realize the potential benefits of positive revenue
shocks. Thus, improving the technical capacity of local governments to manage revenue
windfalls and prioritize human capital investments may enhance the overall effectiveness
of revenue-sharing schemes. Second, by leveraging exogenous variation in commodity
prices, this study provides evidence that large revenue windfalls have the potential to yield
significant benefits for local communities. However, these findings do not account for the
numerous negative externalities associated with oil and gas extraction. Moreover, by
focusing exclusively on positive revenue shocks from natural resource extraction, this
study fails to account for the costs associated with economic reliance on volatile
commodity markets. In this context, this research highlights the potential for conservation
programs to improve deforestation outcomes by improving investments in local
communities, such as access to basic public services.
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