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I. Introduction 

 
Tropical deforestation is regarded as one of the greatest environmental crises of our 

time. Tropical forests provide vital support for fundamental biophysical processes such as 
climate regulation and carbon sequestration (Foley et al., 2007). They also harbor 
invaluable biodiversity and provide natural resources for millions of people who depend on 
them. Despite extensive global conservation eQorts, the conversion and degradation of 
tropical forests continue largely unabated. As a result, calls have mounted for rigorous 
evaluations of the impacts and eQectiveness of diQerent conservation approaches. While 
many empirical evaluations have highlighted a connection between poverty alleviation and 
deforestation, these tend to focus on programs that pay households directly to protect 
forests (“Payments for Ecosystem Services”). Far fewer studies have examined the impact 
of public revenue shocks on deforestation. By leveraging variation in district-level revenues 
induced by a global oil price shock, this study examines the impact of hydrocarbon revenue 
windfalls on deforestation and welfare in the Peruvian Amazon. 

The focus of my study is Peru’s resource canon, a revenue sharing scheme that 
transfers taxes on extractive industries to local governments based on geographic factors 
and population needs. While previous research has examined the social and economic 
impact of Peru’s mining canon, few have examined the impacts of the hydrocarbon canon, 
which is smaller and concentrated in fewer areas. To the best of my knowledge, this is also 
the first study to examine the impact of revenue windfalls on deforestation in the Peruvian 
Amazon, the fourth largest country in tropical forest extension on Earth (FAO, 2006).  

Theoretically, the eQect of revenue windfalls on local forest cover can be positive or 
negative. More revenue can increase forest cover loss by: (i) facilitating the development of 
new infrastructure, particularly new roads which increase access to forested land and 
decreases the cost of agricultural transport. (ii) increasing the value of land for settlement 
and industry, resulting in forest clearing. On the other hand, revenue windfalls can also 
reduce forest cover loss by (i) improving social safety nets and infrastructure that enables 
households to substitute away from forest clearing activities like subsistence agriculture 
(ii) improving local household and industry access to substitutes for local forest resources 
(iii) providing access to external output and labor markets, lowering the relative returns to 
clearing forests for agricultural land.  

To test these hypotheses, I combine public finance data, census data, and remote 
sensing data on deforestation in Peru. I conduct my analysis at the district-level and 
restrict my study area to all districts in the jungle regions of the Peruvian Amazon. My main 
estimation strategy combines diQerence-in-diQerence estimations with a propensity score 
matching approach.  

My first set of results relate to deforestation outcomes. Using annual district-level 
deforestation data, I find a non-monotonic relationship between canon revenue and forest 



loss. For districts below the 50th percentile of the canon distribution, additional revenue 
has a marginally positive eQect on deforestation. Above the 50th percentile, additional 
revenue has a marginally negative eQect on deforestation. At the 50th percentile, a 10-
percentile change is expected to decrease deforestation by 35.6 hectares (7.6% decrease 
at the mean) while a 25-percentile change is expected to decrease deforestation by 215.3 
hectares (46% decrease at the mean). These results are robust to propensity score 
matching, controlling for oil palm expansion as a confounder, and the use of an alternate 
deforestation dataset. 

My second set of results relate to poverty. Using district-level poverty data at three 
points in time, I find that being in the top quartile of canon revenue distribution significantly 
reduces poverty rates by 10 percentage points on average. In contrast, I find that canon 
revenue has no eQect on household water access, sanitation access, or electricity access. 

Taken together, these findings suggest that revenue windfalls had positive 
environmental and social eQects on districts receiving high levels of canon transfers. 
However, districts receiving moderate to low levels of canon did not experience the same 
returns. This non-monotonic relationship is consistent with prior literature highlighting the 
existence of non-linear patterns in the relationship between natural resource revenue 
windfalls and economic and political outcomes (Caselli & Cunningham, 2009; Maldonado, 
2022; Agüero et al., 2021). 

By leveraging exogenous variation in commodity prices, this study provides evidence 
that large revenue windfalls have the potential to yield significant benefits for local 
communities. However, these results do not account for the large negative externalities 
associated with oil and gas extraction. Rather, they highlight the potential to support 
conservation eQorts by improving public infrastructure and supporting the basic needs of 
rural communities in tropical forests.  

 
 

II. Background and Literature Review 
 

As the second largest piece of the Amazon Basin after Brazil, the Peruvian Amazon is 
one of the most biodiverse regions on Earth. It is also home to a large indigenous 
population, including several groups who live in voluntary isolation (Finer & Orta-Martinez, 
2010). At the same time, the region continues to be an active and controversial zone of 
hydrocarbon exploration and production. In Peru, hydrocarbon blocks are delimited by the 
national government and leased to private companies for exploration and production (Finer 
& Orta-Martinez, 2010). The first extensive wave of oil exploration in the Western Amazon 
began in the 1970s. In the mid 2000s, rising global oil prices spurred a second wave of oil 
and gas exploration. As shown in Figure 1, this period was marked by an unprecedented 
extension of hydrocarbon concessions. By 2009, hydrocarbon blocks covered vast swaths 
of the region, though only some areas were successful in production. 
 
  



Figure 1. Maps of Hydrocarbon Concessions in 2004 and 2009 

 
 
 
In Peru, taxes on extractive activity are redistributed to local governments through 

Peru’s resource canon. The national government transfers most of the revenue from 
extractive operations to producing areas, with most revenue accruing to the districts and 
provinces where the site of production is located. Population levels and basic needs are 
considered but only within the mineral producing regions. Specifically, the formula 
allocates 10 percent of the revenue to the producing district(s) and 25 percent to districts 
in the producing province based on population characteristics (rural share), basic needs, 
and infrastructure deficits (Aresti, 2016). The remainder is allocated to regional 
governments.  

While Peru’s Ministry of Economy and Finance does not disclose the information used 
to calculate shares for diQerent jurisdictions, the agency does publish data on the annual 
amount of canon transferred to each district. This data reveals that transfers from the 
canon surged from early 2000 to 2018 (Figure 2), fueled in large part by an increase in 
global commodity prices and extractive operations (Aresti, 2016). As shown in Figure 3, the 
share of total district-level revenue derived from the oil and gas canon ranges significantly 
across my sample. Among these districts, revenue from the oil and gas canon comprised a 
substantial share of revenue if districts were exposed to high levels of canon.  
  



Figure 2. Average District Level Revenue From 1998–2018, By Source. 

 
 

 
Figure 3. Average District Level Revenue by Canon Decile (2008 – 2017) 

 
 



Across Peru, the canon has contributed to substantial inequality in local budgets. In the 
case of the late 2000s oil boom, the distribution of canon revenue was highly concentrated 
in a few regions (See Figure 4). While many districts in producing regions (primarily Ucayali, 
Cusco, and Loreto) received some level of canon, there were still some that received none 
at all.  
 
Figure 4. Distribution of Canon Revenue During Pre-Treatment and Post-Treatment Period 

 
 

 
A large body of empirical literature has examined the social and economic impact of 

revenue windfalls from natural resource extraction. However, many of these studies focus 
exclusively on cross-sectional data at the national level and are prone to endogeneity 
concerns. For instance, estimates obtained using this approach may be biased by 
unobservable characteristics that a priori determine the distribution of extractive activities 
or revenues in aQected areas. Some studies have circumvented these issues by exploiting 
geographic variation in the abundance of natural resources. For example, Caselli & 
Michaels (2013) use variation in the location and timing of oQshore oil well discoveries to 
show that oil windfall revenues increase public expenditures but have little impact on 
public goods provision in Brazilian municipalities.  

Several studies have also leveraged temporal variation in global mineral prices to 
measure the impacts of natural resource production on local communities. For instance, 
Dube and Vargas (2013) use global commodity prices and local production levels to 
evaluate the relationship between commodity price shocks and conflict in Columbia. As 
they point out, exploiting international price changes that are driven by supply shocks 
originating in other nations helps ensure that this variation is exogenous to their outcome of 
interest. Using this methodology, they show that rises in oil prices increased both 
municipal revenue and violence diQerentially in the oil region. Building on this research, I 
exploit cross-sectional variation in exposure to Peru’s resource canon along with temporal 



variation induced by a global oil price shock to estimate the impacts of revenue windfalls 
on local deforestation and welfare outcomes. 

While several studies have examined the social and economic impacts of the Peruvian 
canon, most have focused on the mining canon or the canon more generally. Overall, these 
studies show mixed results. Some studies find no significant eQect of the canon on 
income, poverty, or inequality, while others highlight a positive or even non-monotonic 
relationship (Aragón 2013, Loayza and Rigolini 2016, Zambrano et al. 2014, Maldonado and 
Ardanaz 2023). Moreover, the methods used in these studies vary. Aragón and Winkler 
(2023) implement several diQerent strategies to mitigate omitted variable bias. Their first 
method is equivalent to a diQerence-in-diQerence model with municipality fixed eQects 
and heterogeneous time trends. Their second strategy utilizes a propensity score matching 
approach, similar to the methodology used by Ticci and Escobal (2014) and Loayza and 
Rigolini (2016).  

I draw on these methods to examine the impacts of the hydrocarbon canon on 
deforestation in the Amazon. Unlike Peru’s Andes region, where most of the nation’s mining 
activity takes place, the jungle regions of the Peruvian Amazon are geographically suited for 
oil and gas development. As the fourth largest country in tropical forest extension on Earth 
(FAO, 2006), the Peruvian Amazon serves as a particularly important site of study. Despite 
Peru’s eQorts to adopt international best practices for tropical forest conservation, 
deforestation has continued to grow, driven primarily by expanding cash crop cultivation 
(MINAM, 2021). Between 2000 and 2017, the bulk of new forest loss was primarily 
concentrated in the regions of Ucayali, Huanuco, San Martin, Loreto, and Madre de Dios 
(Figure 4). In this context, state and international conservation agencies have targeted 
Indigenous communities with a range of initiatives that aim to help them conserve forests 
while also pursuing “sustainable” forms of economic development. However, these 
projects have yielded mixed results in terms of conservation outcomes and have not 
fundamentally helped rural Indigenous communities meet their basic needs (Angelsen et 
al., 2018; Brandon, 2001). While many conservation programs oQer limited funding to 
communities for demonstrated reductions in deforestation, they do not allow for significant 
investments in human capital or infrastructure. At the same time, a primary source of 
funding that does support rural services are levies from oil, gas, and, in the Andes, mineral 
extraction. This motivates the question: how have positive revenue shocks from natural 
resource extraction aQected local deforestation outcomes and access to basic services in 
the Peruvian Amazon? 
 
  



Figure 5. District-Level Deforestation in Peru (2001 – 2017)  
 

  



III. Empirical Strategy 
 
IIIA. Data 
 
My study area encompasses all districts in the High Jungle and Low Jungle regions of the 
Amazon. These regions comprise the largest share of the Amazon and are ecologically 
distinct from the Andes region, which rests on the Eastern Amazon border. In the 
deforestation analysis, I restrict my sample to districts where protected area covers less 
than half of total area, and where forest cover in the year 2000 comprises less than ten 
percent of total area. 
 
Deforestation  
 
To measure deforestation between 2001 and 2017, I used the Global Forest Change 
dataset provided by Hansen et al. (2013). This dataset provides a binary measure of annual 
forest loss per 30m² pixel based on Landsat satellite imagery. Forest loss is calculated 
relative to baseline forest cover in the year 2000, where the presence of forest area is 
counted when tree canopy exceeds five meters. My outcome variable is expressed as the 
amount of forest loss detected in each year within each district. 
 
I verify my estimates using the Geo Bosque dataset published by Peru’s Ministry of 
Agriculture. While both are based on Landsat satellite imagery, the two diQer slightly in 
methodology. 
 
Socioeconomic Outcomes 
 
The second portion of my analysis examines poverty and public goods provision. This panel 
dataset draws from three diQerent national censuses (1993, 2007, and 2017). My primary 
outcomes are measures of poverty and local living standards that could be aQected by 
local governments’ policies. These indicators include access to public services (piped 
water, indoor sewage, and electricity) and the household rate poverty. 
 
Canon Revenue 
 
Data on annual district-level revenues was obtained from Peru’s Ministry of Economy and 
Finance. All monetary values were deflated to 2010 levels and merged with 2017 National 
Census data to compute per capita measures revenue. 
 
Exposure to the canon is measured as the total value of canon revenue transferred to a 
district between 2008-2017. To mitigate the eQect of extreme outliers in the data, canon 
revenue is expressed in terms of percentile ranks. Districts receiving no canon are ranked 
at the 0th percentile. 
 
  

https://storage.googleapis.com/earthenginepartners-hansen/GFC-2022-v1.10/download.html


Control Variables 
 
Additional control variables were selected based on a literature review of deforestation 
drivers in Peru and the other Amazonian countries. These variables are summarized in 
Table 1 and briefly described below. 
 
I proxy for market access and mobility by calculating the average Euclidean distance from 
the centroid of each district to its nearest departmental capital. Deforestation can also 
vary widely across different forest governance (Schleicher et al., 2017). To account for 
these effects, I calculated the proportion of each district that falls within protected forest 
areas, indigenous territories, and logging concessions. 
 
Biophysical factors, such as terrain and climate, can affect deforestation through variation 
in local agricultural suitability and forest growth (Bax & Francesconi, 2018). I therefore 
control for the average altitude, slope, annual precipitation levels, and baseline 
temperature of each district. Moreover, I used boundaries on national ecoregions to 
determine the ecological biome that encompasses the largest area in each district. 
 
All variables were converted into spatially explicit layers and summarized at the district 
level. As detailed in Table 7, logarithmic and square root transformations were applied to 
several variables to ensure normality of the residuals. A constant value of 1 to log-
transformed variables to avoid zero-values.  

 
  



Table 1. Description of variables  
  

Variable Units Description Transformation Source Spatial 
Resolution 

Deforested Area 
(GFW)  

hectares / 
year 

Annual forest loss 
detected between 2000 
to 2017 

 
Global Forest 
Watch 

30m 

Baseline Forest 
Cover in 2000  

% Percentage of district 
covered in forested area 
in 2000 

  Global Forest 
Watch  

30m 

Deforested Area 
(GB) 

hectares / 
year 

Annual forest loss 
detected between 2000 
to 2017 

 Geo Bosque 30m 

Elevation  meters Mean elevation   Instituto 
Geográfico 
Nacional (IGN) 

1:500 000 

Slope   degrees Mean slope 
 

Instituto 
Geográfico 
Nacional (IGN) 

1:500 000 

Rainfall mm Annual precipitation 
levels 

 
CHIRPS 0.05° 

Temperature °C Average annual mean 
temperature recorded 
between 1981–2020 

 
Huerta et al. 2023 0.01° 

Distance to 
Nearest Capital 

m Distance from district 
centroid to the nearest 
department capital 

log     

Protected Areas % Percentage of district 
located in a national, 
regional, or private 
protected area 

% SERNANP 

 

Ecoregions FE Categorical variable 
representing the 
ecoregion covering the 
most area in the district 

 
MINAM 

 

Departments FE Categorical variable 
representing the district 
department (two 

  Instituto 
Geográfico 
Nacional (IGN) 

  

https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2023-v1.11/download.html
https://geobosques.minam.gob.pe/geobosque/view/descargas.php?122345gxxe345w34gg
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs/
https://www.nature.com/articles/s41597-023-02777-w/tables/1
https://geo.sernanp.gob.pe/visorsernanp/
https://geoservidor.minam.gob.pe/recursos/intercambio-de-datos/
https://data.humdata.org/dataset/cod-ab-per?
https://data.humdata.org/dataset/cod-ab-per?
https://data.humdata.org/dataset/cod-ab-per?


administrative levels 
above districts) 

Population 
Density 

person/ 
m2 

Population from 2017 
census divided by district 
area 

log INEI   

Canon Revenue  soles per 
capita 

Annual per capita 
revenue from 2004-2017 

 
MEF 

 

Poverty Rate % Poverty rate reported in 
1999, 2007, and 2017 
national census 

 INEI  

Water Access 
Rate 

% Percentage of 
households lacking 
access to a public water 
network (1993, 2007, 
2017) 

 INEI  

Sanitation 
Access Rate 

% Percentage of 
households lacking 
access to indoor 
sanitation (1993, 2007, 
2017) 

 INEI  

Electricity 
Access 

% Percentage of 
households without 
electric lighting (1993, 
2007, 2017) 

 INEI  

 
 
IIIB. Balance Test 
 
A major threat to validity is that resource-based transfers are not randomly distributed and 
may be influenced by unobservable characteristics. To address this concern, I conduct a 
balance test where I distinguish between municipalities with high levels of canon (top 25% 
of the per capita canon) and low levels of canon (bottom 75%). I use this distinction as the 
baseline indicator of treatment status. 
 
Table 2 compares key characteristics between these two groups. Overall, districts with high 
levels of canon tend to be larger, more rural, less accessible by road, and have 
proportionally more forest cover in the year 2000. In 2007, before the start of the oil boom, 
these districts also had slightly worse access to public services and marginally higher 
poverty rates. These diQerences are likely driven by the canon allocation formula, which 
prioritizes rural districts with higher demonstrated need. 
 

https://censos2017.inei.gob.pe/redatam/
https://apps5.mineco.gob.pe/transferencias/cuadros/Hoja1_1.aspx
https://censos2017.inei.gob.pe/redatam/
https://censos2017.inei.gob.pe/redatam/
https://censos2017.inei.gob.pe/redatam/
https://censos2017.inei.gob.pe/redatam/


Table 2. Balance Test Comparing Districts in the Top Half of the Canon Revenue Distribution 
to Districts in the Bottom Half

 
 
  



IIIC. Empirical Strategy 
 
My estimation strategy exploits two sources of variation. The first is time variation arising 
from a shock in global oil prices. The second source of variation is cross-sectional and 
arises from diQerences in the share of revenue allocated to a district, as determined by the 
canon distribution formula. Leveraging the interaction of these two sources of variation, I 
use a diQerences-indiQerences (DD) approach to compares deforestation levels between 
districts that are my favored by the canon to districts that are less favored by the canon, 
before and after the start of the oil boom in 2008. 
 
Deforestation 
 
First, I use panel data on annual forest loss between 2001-2017 to estimate the impacts on 
deforestation at the district-level. My baseline specification is as follows: 

 
𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!" = 𝛽#(𝑓(𝐶𝑃!) ∗ 𝐷") + 𝛽$(𝑅!") + 𝛽%(𝑋! ∗ 𝑌") + 𝐹𝐸! + 𝐹𝐸&" + 𝜀!"  

 
where (𝑖, 𝑡, 𝑑) denote respectively district, year, and department. The outcome 
variable,	𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!" , corresponds to the amount of forest loss (hectares) detected in 
district 𝑖 in year 𝑡. The variable 𝐷!  is a binary indicator that equals one in every year starting 
from 2008, the start of the commodity boom. 𝑓(𝐶𝑃!) is a function of cumulative canon 
revenue per capita allocated to district 𝑖 between 2008 and 2017. Due to the substantial 
variation in canon transfers, 𝐶𝑃!  is expressed as a percentile rank. My preferred 
specification of 𝑓(𝐶𝑃!) is a quadratic function, though I report additional specifications in 
my results section. 𝑅!"	represents the annual rainfall for each district 𝑖 in year 𝑡. 𝑋!  is a 
vector of district-specific time-invariant control variables, including the proportion of 
baseline forest cover in 2000, distance to the nearest departmental capital, the rural 
population share in 2007, the poverty rate in 2007, population density, percent of area 
classified as a protected area, and average slope. Interacting 𝑋!  with year dummy variables 
(𝑌") allows these eQects to vary flexibly over time. District fixed eQects (𝐹𝐸!) are added to 
control for time invariant factors that vary between districts. Department-year fixed eQects 
(𝐹𝐸'") are included to control for any macro level shocks that vary across departments, an 
administrative unit equivalent to states. 𝜀!"  is the error term. A complete list of variables is 
described below in Table 1. 
 
Poverty & Public Goods Provision 
 
The second portion of my analysis estimates the eQect of canon revenue on poverty and 
public goods provision using national census data from the years 1993, 2007, and 2017. My 
diQerence-in-diQerences strategy compares the change in outcomes during the post-oil 
boom period (2017) relative to the pre-oil boom period (1993 and 2007) between districts 
that were highly aQected by the canon to those that were less aQected by the canon. My 
baseline specification is as follows: 
 



𝑦!" = 𝛽#(𝑓(𝐶𝑃!) ∗ 𝐷") + 𝛽$(𝑋! ∗ 𝑌") + 𝐹𝐸! + 𝐹𝐸(" + 𝜀!"  
 
where (𝑖, 𝑡, 𝑒) denote respectively district, year, and ecoregion. The outcome variable, 𝑦!" , 
corresponds to one of the following four outcome variables: poverty rate (percentage of 
households in poverty), water access rate (percentage of households without a public 
water network), sanitation access rate (percentage of households without indoor sanitation 
services), and electricity access rate (percentage of households without electric lighting). 
The variable 𝐷!  is a binary indicator that equals one in the year 2017, the only year with 
census data collected after the commodity boom. 𝑓(𝐶𝑃!) is a function of cumulative canon 
revenue per capita allocated to district 𝑖 between 2008 and 2017, expressed as a percentile 
rank. 𝑋!  is a vector of district-specific time-invariant control variables, including distance to 
the nearest departmental capital, the rural population share in 2007, the urban population 
count in 2007, and the amount of forested area in 2000. Interacting 𝑋!  with year dummy 
variables (𝑌") allows these eQects to vary flexibly over time. I include district fixed eQects 
(𝐹𝐸!) to control for time invariant factors that diQer between districts, and I include 
ecoregion-year fixed eQects (𝐹𝐸(") to control for macro level shocks that aQect the High 
Jungle and Low Jungle ecoregions diQerentially over time. 𝜀!"  is the error term. 
 
Propensity Score Matching  
 
My second empirical approach uses propensity score matching (PSM) to mitigate the 
challenges associated with the non-random assignment of canon revenue. The PSM 
approach constructs an artificial control group that matches each treated unit with a non-
treated unit of similar characteristics. In this context, treatment assignment corresponds 
to being in the top half of the canon revenue distribution. 
 
For the deforestation analysis, matching is done on a set of geographic characteristics, 
including baseline forest cover, elevation, rainfall, temperature, population density, rural 
population share, percent of households with piped water in 2007, and distance to the 
nearest road. This ensures that treated and non-treated districts are comparable based on 
factors that could influence deforestation rates. For each socioeconomic outcome, 
matching is based on the outcome measured in 2007, as well as population density, rural 
share, elevation, and distance to the nearest road. 
 
Figure 8 maps illustrates the weighted sample used for the deforestation analysis after 
propensity score matching and Figure 9 plots the standardized mean diQerence of the 
selected matching covariates. Figure 9 shows that before matching (grey circles), most 
covariates exhibit significant diQerences between the treated and control groups. After 
matching (black circles), the standardized mean diQerences shrink and cluster around 
zero, indicating improved balance. By balancing these covariates across treatment and 
control groups, PSM mitigates the impact of confounding variables, strengthening the 
robustness of the subsequent analysis. 



Figure 8. Matched Sample for Deforestation Analysis 

 
 
Figure 9. Standardized Mean DiXerence of Matching Covariates 

 
 
  



IV. Results 
 
IV.A Main Results for Deforestation Outcomes 
 

Table 4 presents baseline estimates with various specifications of 𝑓(𝐶𝑃!). Column (1) 
includes a binary treatment indicator that corresponds to being in the top half of the canon 
distribution, column (2) includes a binary indicator that corresponds to being in the top 
quarter of the canon distribution, and column (3) includes canon percentile as a 
continuous measure. The coeQicient estimates in all three columns are positive but 
insignificant. 

In column (4), a significant non-linear relationship emerges when canon percentile is 
expressed as a quadratic polynomial term. The estimated coeQicient of the interaction 
term (𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒! + 𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒!$) ∗ 𝐷 reveals the average increase in 
deforestation arising from a one percentile increase in canon revenue after 2008. The 
negative coeQicient on the quadratic term, 𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒!$ ∗ 𝐷, indicates that the shape 
of this regression line resembles a downward facing parabola. According to these 
estimates, deforestation is expected to increase at an increasing rate for every additional 
percentile increase from the 0-50th percentile.  

For districts below the 50th percentile, every additional percentile increases 
deforestation at an increasing rate. For every additional percentile after the 50th percentile, 
canon revenue has an increasingly negative eQect on deforestation. At the 50th percentile, a 
10-percentile change is expected to decrease deforestation by 35.6 hectares (7.6% 
decrease at the mean), a 25-percentile change is expected to decrease deforestation by 
215.3 hectares (46% decrease at the mean), and a 40-percentile change is expected to 
decrease deforestation by 546.7 hectares.  

Figure 10 plots the eQect of 𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒!$ on deforestation in each year relative to 
2007 levels. Overall, we observe agreement between the two deforestation outcomes 
derived using the Global Forest Watch and Geo Bosque datasets. The magnitude of the 
coeQicient on 𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒!$ increases immediately following 2007. Importantly, this 
plot shows that prior to 2008, district-level deforestation does not appear to depend on 
levels of canon revenue received. However, a notable exception arises in the year 2005, 
when deforestation across the entire region spiked. Past research suggests that new 
logging concessions played a key role in this marked increase (Oliveira et al., 2007).  
 
 
  



Table 4. Baseline estimates of canon revenue on deforestation 

 
 
Figure 10. EXect of 𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒!$ on deforestation relative to 2007 levels 

  
 
Note: black points correspond to deforestation measured using the Global Forest Change 
dataset, red corresponds to deforestation measured with the Geo Bosque dataset. 



 
Figure 11. EXect of 𝑐𝑎𝑛𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒!  on deforestation relative to 2007 levels 

 
 
Note: black points correspond to deforestation measured using the Global Forest Change 
dataset, red corresponds to deforestation measured with the Geo Bosque dataset. 
 
 
 
  



IV.B Robustness Checks for Deforestation 
 
The results thus far show that starting after the oil boom in 2008, canon revenue has a 
significant non-linear eQect on deforestation. To check the robustness of the results, I 
extend the analysis along three dimensions. In Table 5, I present my baseline specification 
(column 1) alongside three alternative specifications. In column (2), I show that these 
results are robust to using the alternate Geo Bosque deforestation dataset. Note, this 
dataset provides more conservative estimates of deforestation relative to the Global Forest 
Watch dataset. Consequently, the magnitude of the coeQicient estimates are smaller.  
 
Table 5. Baseline estimates of canon revenue on deforestation 
 

 
 
 
Propensity Score Matching 
 
In my second test, I use propensity score matching to create an artificial sample that is 
balanced on observable characteristics. This approach requires a binary treatment 



variable to denote the treatment group. Accordingly, I define treatment as districts in the 
top two quartiles of the canon distribution.  
 
Column (4) shows that my results are robust to implementing propensity score matching.  
In fact, the magnitude of the coeQicients increase significance after implementing 
propensity score matching. 
 
Controlling for Oil Palm Expansion as a Driver of Deforestation 
 
As one of the largest drivers of deforestation in Peru (Bennett et al., 2018), the expansion of 
oil palm plantations presents a significant threat to validity. Figures 12 and 13 reveal that 
rising oil palm prices appear to align with trends in deforestation, raising even greater 
cause for concern. To ensure that the eQect of the oil boom is not confounded by 
coinciding shocks to the oil palm industry, I compute the level of oil palm cover detected in 
each district in 2015 based using data from Vijay et al. (2018). In column (3) of Table 5, I 
interact this variable with annual global palm oil prices. Columns (4) and (5) present the 
same specification but include a one-year and two-year time lag in global oil palm prices. 
In all oil palm specifications (columns 3-6), the coeQicient on the interaction between oil 
palm cover*price is positive and significant. However, the coeQicients on canon revenue 
remain highly significant, suggesting that the coinciding expansion of oil palm plantations 
is not the main driver of this eQect. 
  



Figure 12.  Aggregate Deforestation Over Time 

 
 
Figure 13. Global Palm Oil Prices Over Time 

 
  



Spatial Autocorrelation 
 
Deforestation often exhibits strong spatial dependence due to the nature of the 
phenomena involved. Geographical proximity plays a significant role in influencing 
deforestation patterns because changes in one area can have spillover eQects on 
neighboring regions through ecological, economic, and policy channels. If spatial 
correlations are present in the data, traditional standard errors falsely assume 
observations are independent, leading to biased and inconsistent estimates. Conley 
standard errors can correct for these issues by adjusting for spatial autocorrelation within a 
specified distance. This makes Conley standard error more flexible than other methods 
that assume specific forms of spatial dependence. 
 
To account for potential spatial autocorrelation, I test my baseline specification using 
Conley standard errors of varying bandwidths. As shown in Table 6, my results are robust to 
using bandwidth lengths up to 500km.  
 
Table 6. Baseline deforestation estimates with Conley standard errors 
 

 
 
  



IV.C Discussion of Deforestation Results 
 
Overall, I find a non-linear relationship between canon revenue and deforestation. These 
results are robust to accounting for the confounding eQects of oil palm expansion, 
implementing propensity score matching, and using Conley standard errors to account for 
spatial autocorrelation. 
 
According to my baseline specification (reported in column 1 of Table 5), additional 
exposure to the canon has an increasingly positive eQect on deforestation for districts 
below the 50th percentile. Between 2008 and 2017, districts at the 50th percentile received 
approximately 16 percent of total revenue from the oil and gas canon, compared to 56 
percent for districts at the 90th percentile. Thus, districts in the bottom half of the 
distribution benefit only moderately from the canon. The positive deforestation eQect 
observed for these districts is likely related to the canon distribution formula, which 
considers various indicators of need in addition to geographic proximity. Districts below the 
50th percentile are most likely not producing districts1. Rather, these districts likely receive 
canon revenue because they are a) located in the same province as a producing district 
and b) demonstrate some level of need. Past research indicates that non-producing 
recipients of the canon tend to be poorer and more rural relative to the average potential 
beneficiary (Loayza & Rigolini, 2016). Hence, canon may increase deforestation in these 
districts because they are poorer to begin with and do not enjoy the full benefits of new 
development, such as the creation of new jobs and robust public spending.  
 
This finding is also in line with prior literature suggesting a non-monotonic relationship 
between revenue windfalls and public expenditure. Maldonado and Ardanaz (2023) show 
that the change in public expenditures induced by Peru’s mining canon varies according to 
the level of transfers received. They find that “Transport” expenditures category 
experienced the most dramatic increase as a result of the revenue windfalls. However, 
resource-rich districts spent significantly less on transportation than the average district, 
where “Transport” expenditures increased by 250 soles for every 1000 soles of canon 
transfers (Maldonado & Ardanaz, 2023). Given that road construction is widely considered 
to be one of the largest drivers of deforestation in the Peruvian Amazon (Bax et al., 2016), 
this finding is consistent with a positive deforestation eQect of additional canon for 
districts receiving low/moderate levels of canon. 
 
In contrast, districts receiving high levels of canon are most likely to be producing districts. 
This means that benefits accrue to these districts because they are geographically suitable 
for production. These districts experience the opposite eQect. That is, more revenue is 
expected to have an increasingly large negative eQect on deforestation. There are many 
reasons why this may be the case. First, a substantial influx of new revenue may allow 
districts to substitute away land-intensive agricultural activity. In producing districts, the 

 
1 Producing districts house the site of oil and gas production. These districts are awarded the most revenue by 
the canon distribution formula. 



expansion of oil and gas operations can increase employment and demands for local 
goods and services, which can help diversify income sources away from the agricultural 
sector. Revenue windfalls can also be used to finance health and educational services, 
infrastructure, and other public goods that increase physical and human capital 
accumulation. Oil and gas development can also aQect the agricultural sector through 
crowding out. For instance, hydrocarbon extraction often relies on intensive water use, 
requires extensive land area, and can result in major environmental externalities (Finer & 
Orta-Martinez, 2010). 
  



IV.D Results for Socioeconomic Outcomes 
 
In Tables 7-10, I report estimates with canon revenue expressed in various forms. Table 7 
and Table 8 reports canon as a continuous measure of treatment, expressed as quartiles 
and deciles of canon, respectively. Table 9 and Table 10 reports canon as a binary measure 
of treatment, expressed as being in the top quartile or top two quartiles, respectively. 
 
In all specifications, the significant negative coeQicient in column (1) reveals that canon 
reduces poverty. The magnitudes of the coeQicients are relatively similar across these 
diQerent specifications. However, column (2) shows that this eQect is only robust to 
propensity score matching (remains significant at the 5 percent level) when treatment is 
defined as being in the top quartile. Specifically, this specification indicates that being in 
the top quartile decreases poverty rates by 10 percentage points on average. At the mean 
poverty rate of 44 percent, this eQect translates into a substantial 22.8 percent reduction.  
 
Next, I report estimates on measures of public goods provision. Across all four 
specifications, insignificant coeQicients in columns (3) – (8) reveal that canon revenue has 
no eQect on household water access, sanitation access, or electricity access. 
 
For all outcomes, we do not observe any clear trends of the estimated interaction eQects 
prior to the oil boom (Figures 14a-d). For the poverty outcome, the magnitude of the 
coeQicient on 𝑇𝑜𝑝	𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 sharply increases in 2017, the only year measuring post-boom 
outcomes. 
 
This negative impact of canon on poverty rates is consistent with research by Loayza and 
Rigolini (2016), who study the impacts of Peru’s mining canon. Specifically, they find 
significant reductions in poverty in districts where mining production takes place. In other 
words, the benefits of mining activity are localized to producing districts, who receive the 
bulk of profits from mining activity. 
 
This lack of impact on public goods and services is consistent with prior evidence by 
(Aragón & Winkler, 2023), Caselli & Michaels (2009), and Ticci and Escobal (2015). In their 
evaluation Brazil municipalities, Casseli and Michaels (2010) find that revenue windfalls 
from oQshore oil wells translate into increases in public expenditure but have insignificant 
impacts on public goods and services. In studying the long-term impacts of the overall 
resource canon in Peru, (Aragón & Winkler, 2023) find no significant eQects on access to 
public services or poverty levels. Similarly, Ticci and Escobal (2015) find that new mining 
operations in Peru did not improve access to public services between 1993 and 2007. 
 
The lack of impact on public goods and services can be attributed to several possible 
explanations. First, it’s possible that improvements to water, sanitation, and electricity 
infrastructure are hindered by the geography of the Amazon. As discussed earlier, districts 
aQected by the canon tend to be more remote, less dense, and further from roads. Thus, 
the cost of upgrading water, sanitation, and electricity infrastructure may be significantly 



higher in these districts. It’s also possible that local governments prefer to allocate revenue 
windfalls on projects that are not reflected in these outcomes. For instance, Aragón & 
Winkler (2023) find positive eQects of the overall resource canon on transport 
infrastructure projects and municipal resources, such as personnel and vehicles. 
Furthermore, it’s possible local governments lack the technical capacity to use the canon 
eQectively. For instance, Loayza et al. (2014) and Hoyos (2019) find suggestive evidence 
that lack of technical capacities was an important constraint for local governments to use 
their budget on investment projects eQectively. 
 

 
 
Figures 14 a-d.  

 
 

 
 

Note: red points correspond to the coeQicient on top quartile*D, black points correspond to the 
coeQicient on canon decile*D. 

 
  



Table 7. EXect of canon quartile on poverty and public goods 

 
 
Table 8. EXect of canon decile on poverty and public goods 

  
  



Table 9. EXect of being in the top quartile on poverty and public goods 

 
 
Table 10. EXect of being in the top two quartiles on poverty and public goods 

 
  



V. Conclusion 
 
This study exploits variation in hydrocarbon production and global oil prices to examine the 
impact of revenue windfalls on deforestation and welfare in the Peruvian Amazon. My 
results reveal a non-monotonic relationship between deforestation and revenues 
transferred through the “canon,” Peru’s national revenue-sharing scheme. Specifically, I 
find that additional canon increases deforestation for districts in the bottom half of the 
canon distribution but decreases deforestation for districts in the top half. Furthermore, I 
find that high levels of canon revenue (being in the top quartile) significantly reduces 
poverty (10 pp on average) but has no eQect on access to basic goods and services. 
 
These findings have significant policy implications. First, they show that moderately 
aQected communities are less likely to realize the potential benefits of positive revenue 
shocks. Thus, improving the technical capacity of local governments to manage revenue 
windfalls and prioritize human capital investments may enhance the overall eQectiveness 
of revenue-sharing schemes. Second, by leveraging exogenous variation in commodity 
prices, this study provides evidence that large revenue windfalls have the potential to yield 
significant benefits for local communities. However, these findings do not account for the 
numerous negative externalities associated with oil and gas extraction. Moreover, by 
focusing exclusively on positive revenue shocks from natural resource extraction, this 
study fails to account for the costs associated with economic reliance on volatile 
commodity markets. In this context, this research highlights the potential for conservation 
programs to improve deforestation outcomes by improving investments in local 
communities, such as access to basic public services. 
 
 

-  
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